Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 627(8003): 399-406, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448581

ABSTRACT

Immune cells rely on transient physical interactions with other immune and non-immune populations to regulate their function1. To study these 'kiss-and-run' interactions directly in vivo, we previously developed LIPSTIC (labelling immune partnerships by SorTagging intercellular contacts)2, an approach that uses enzymatic transfer of a labelled substrate between the molecular partners CD40L and CD40 to label interacting cells. Reliance on this pathway limited the use of LIPSTIC to measuring interactions between CD4+ T helper cells and antigen-presenting cells, however. Here we report the development of a universal version of LIPSTIC (uLIPSTIC), which can record physical interactions both among immune cells and between immune and non-immune populations irrespective of the receptors and ligands involved. We show that uLIPSTIC can be used, among other things, to monitor the priming of CD8+ T cells by dendritic cells, reveal the steady-state cellular partners of regulatory T cells and identify germinal centre-resident T follicular helper cells on the basis of their ability to interact cognately with germinal centre B cells. By coupling uLIPSTIC with single-cell transcriptomics, we build a catalogue of the immune populations that physically interact with intestinal epithelial cells at the steady state and profile the evolution of the interactome of lymphocytic choriomeningitis virus-specific CD8+ T cells in multiple organs following systemic infection. Thus, uLIPSTIC provides a broadly useful technology for measuring and understanding cell-cell interactions across multiple biological systems.


Subject(s)
B-Lymphocytes , CD8-Positive T-Lymphocytes , Cell Communication , Dendritic Cells , Epithelial Cells , T Follicular Helper Cells , T-Lymphocytes, Regulatory , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Communication/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Ligands , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , T Follicular Helper Cells/cytology , T Follicular Helper Cells/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Germinal Center/cytology , Single-Cell Gene Expression Analysis , Epithelial Cells/cytology , Epithelial Cells/immunology , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Lymphocytic choriomeningitis virus/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Organ Specificity
2.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36993443

ABSTRACT

Cellular interactions are essential for tissue organization and functionality. In particular, immune cells rely on direct and usually transient interactions with other immune and non-immune populations to specify and regulate their function. To study these "kiss-and-run" interactions directly in vivo, we previously developed LIPSTIC (Labeling Immune Partnerships by SorTagging Intercellular Contacts), an approach that uses enzymatic transfer of a labeled substrate between the molecular partners CD40L and CD40 to label interacting cells. Reliance on this pathway limited the use of LIPSTIC to measuring interactions between CD4+ helper T cells and antigen presenting cells, however. Here, we report the development of a universal version of LIPSTIC (uLIPSTIC), which can record physical interactions both among immune cells and between immune and non-immune populations irrespective of the receptors and ligands involved. We show that uLIPSTIC can be used, among other things, to monitor the priming of CD8+ T cells by dendritic cells, reveal the cellular partners of regulatory T cells in steady state, and identify germinal center (GC)-resident T follicular helper (Tfh) cells based on their ability to interact cognately with GC B cells. By coupling uLIPSTIC with single-cell transcriptomics, we build a catalog of the immune populations that physically interact with intestinal epithelial cells (IECs) and find evidence of stepwise acquisition of the ability to interact with IECs as CD4+ T cells adapt to residence in the intestinal tissue. Thus, uLIPSTIC provides a broadly useful technology for measuring and understanding cell-cell interactions across multiple biological systems.

3.
Nature ; 569(7754): 126-130, 2019 05.
Article in English | MEDLINE | ID: mdl-30988509

ABSTRACT

The intestinal immune system has the challenging task of tolerating foreign nutrients and the commensal microbiome, while excluding or eliminating ingested pathogens. Failure of this balance leads to conditions such as inflammatory bowel diseases, food allergies and invasive gastrointestinal infections1. Multiple immune mechanisms are therefore in place to maintain tissue integrity, including balanced generation of effector T (TH) cells and FOXP3+ regulatory T (pTreg) cells, which mediate resistance to pathogens and regulate excessive immune activation, respectively1-4. The gut-draining lymph nodes (gLNs) are key sites for orchestrating adaptive immunity to luminal perturbations5-7. However, it is unclear how they simultaneously support tolerogenic and inflammatory reactions. Here we show that gLNs are immunologically specific to the functional gut segment that they drain. Stromal and dendritic cell gene signatures and polarization of T cells against the same luminal antigen differ between gLNs, with the proximal small intestine-draining gLNs preferentially giving rise to tolerogenic responses and the distal gLNs to pro-inflammatory T cell responses. This segregation permitted the targeting of distal gLNs for vaccination and the maintenance of duodenal pTreg cell induction during colonic infection. Conversely, the compartmentalized dichotomy was perturbed by surgical removal of select distal gLNs and duodenal infection, with effects on both lymphoid organ and tissue immune responses. Our findings reveal that the conflict between tolerogenic and inflammatory intestinal responses is in part resolved by discrete gLN drainage, and encourage antigen targeting to specific gut segments for therapeutic immune modulation.


Subject(s)
Duodenum/immunology , Lymph Nodes/immunology , T-Lymphocytes/immunology , Animals , CD4 Antigens/metabolism , Cell Differentiation , Cell Movement , Cell Polarity , Dendritic Cells/immunology , Dendritic Cells/metabolism , Duodenum/cytology , Duodenum/microbiology , Female , Lymph Nodes/cytology , Lymph Nodes/metabolism , Male , Mice , Mice, Inbred C57BL , Mouth/immunology , Mouth/microbiology , Rats , Rats, Wistar , Stromal Cells/immunology , Stromal Cells/microbiology , T-Lymphocytes/cytology , T-Lymphocytes/microbiology
4.
J Immunol ; 193(10): 5171-80, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25326026

ABSTRACT

The commensal microbiota has a high impact on health and disease by modulating the development and homeostasis of host immune system. Immune cells are involved in virtually every aspect of the wound repair process; however, the impact of commensal microbiota on skin wound healing is largely unknown. In this study, we evaluated the influence of commensal microbiota on tissue repair of excisional skin wounds by using germ-free (GF) Swiss mice. We observed that macroscopic wound closure rate is accelerated in the absence of commensal microbiota. Accordantly, histologically assessed wound epithelization was accelerated in GF in comparison with conventional (CV) Swiss mice. The wounds of GF mice presented a significant decrease in neutrophil accumulation and an increase in mast cell and macrophage infiltration into wounds. Interestingly, alternatively activated healing macrophage-related genes were highly expressed in the wound tissue of GF mice. Moreover, levels of the anti-inflammatory cytokine IL-10, the angiogenic growth factor VEGF and angiogenesis were higher in the wound tissue of those mice. Conversely, scarring and levels of the profibrogenic factor TGF-ß1 were greatly reduced in GF mice wounded skin when compared with CV mice. Of note, conventionalization of GF mice with CV microbiota restored wound closure rate, neutrophil and macrophage accumulation, cytokine production, and scarring to the same extent as CV mice. Overall, our findings suggest that, in the absence of any contact with microbiota, skin wound healing is accelerated and scarless, partially because of reduced accumulation of neutrophils, increased accumulation of alternatively activated healing macrophages, and better angiogenesis at wound sites.


Subject(s)
Cicatrix/prevention & control , Germ-Free Life/immunology , Re-Epithelialization/physiology , Skin/immunology , Animals , Cell Movement/immunology , Cicatrix/immunology , Female , Gene Expression Regulation , Interleukin-10/genetics , Interleukin-10/immunology , Macrophages/cytology , Macrophages/immunology , Macrophages/microbiology , Male , Mast Cells/cytology , Mast Cells/immunology , Mast Cells/microbiology , Mice , Microbiota/immunology , Neovascularization, Physiologic , Neutrophils/cytology , Neutrophils/immunology , Neutrophils/microbiology , Skin/blood supply , Skin/injuries , Skin/microbiology , Symbiosis/immunology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/immunology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...